点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:至尊彩票攻略-百度词条
首页>文化频道>要闻>正文

至尊彩票攻略-百度词条

来源:至尊彩票注册2024-08-12 17:48

  

至尊彩票攻略

浙江丽水:擦亮健康底色,以数字化改革提升服务力******

  时值严冬,呼吸道疾病感染进入高发期。在浙江省丽水市莲都区大港头镇官岭村,山区村民足不出村,即可在家门口的“流动发热门诊”就诊取药。

  近日,2022年度全国爱国卫生运动大会在北京举行。在大会的健康城市主题分会上,丽水市副市长卢彩柳作“倡导文明健康助力健康城市建设”典型经验分享时介绍,丽水打造的“智慧流动医院”,实现了758个未设医疗机构的偏远行政村全覆盖。

  早在2018年,丽水市创新建立了“流动医院”巡回诊疗山区模式,此后运用数字化技术加以升级改造。近期,当地基于46辆“智慧流动医院”巡回诊疗车(以下简称“智慧流动医院”),按需开设“流动发热门诊”。

  地处浙南山区的丽水,生态环境状况指数连续18年位居浙江省首位。记者了解到,丽水市已连续两年获评全国健康城市建设样板市,除了良好的生态环境,以数字化改革提升服务水平,是当地建设“健康丽水”的重要手段。

  经过升级改造的“智慧流动医院”,除了可进行常规的血压、血糖检查,还能实现心电图、尿检、B超等项目。尤为关键的是,智慧车载系统配备5G网络,通过打通医保系统,安装移动结算系统,在车内就可以实现医保刷卡结算,挂号收费、就医、检查、取药、医保报销、家庭医生签约、公共卫生服务等并网运行,让山区群众在家门口就能享受到县级医院的门诊服务。

  新冠肺炎疫情防控期间,“智慧流动医院”曾数次驶入封控区,保障隔离群众看病买药需求。如2022年3月至4月,丽水莲都区岩泉街道蔚蓝水岸小区相关区域被划定疫情防控“三区”,莲都区当即协调“智慧流动医院”定期驻点开诊。

  彼时,群众通过“浙里办”平台的“智慧流动医院”服务端,进入“需求反馈”界面,提出就医需求,区域基层医疗机构就能在“丽水市智慧流动医院管理监测平台”收到群众信息,提前安排出诊医生,为群众提供“点单式”服务,按需备好检查设备、药品、医疗物资等。

  2022年7月,丽水市卫健委打造的“救在丽水”应用,在“浙里办”平台正式上线,通过构建多跨协同、高效便捷的山区医疗急救服务模式,进一步畅通山区群众“就医通道”。

  记者了解到,该应用整合了丽水全市233家医疗机构、127辆院前急救车、46个流动医院、524台AED等资源,打通卫健、公安、医保等8个部门数据壁垒,集成双向定位、上车即入院等19个信息模块和1121个数据项目。

  据介绍,“救在丽水”通过构建“身边救”“同步救”“精准救”“全域救”“全程救”5个场景,将原先急救流程中4个线下人工环节整合为线上一体化流程,将原来车上只能做体征监测模式提升为同步会诊模式,救治成功率从96%提升至98%,院前心肺复苏成功率从1.12%提升至2.26%。

  2022年以来,“救在丽水”已参与执行急救任务45614次,促使全市急救服务半径从32公里缩小至19公里、平均急救反应时间从34分钟减少至18分钟,被评为浙江省数字社会系统2022年度“最佳应用”。

  丽水市爱卫办相关负责人介绍,近年来,丽水实施健康优先发展战略,创新健康城市综合管理智慧化监管模式,依托“花园云”城市大脑,建成了健康城市管理体系,打通共享卫生健康、市场监管、行政执法、建设等部门数据,推动城市管理、食品安全、卫生监督等重点领域数字化智慧监管。

  该负责人表示,接下来,丽水将进一步贯彻“将健康融入所有政策”“人民共建共享”的工作方针,将爱国卫生运动与传染病、慢性病防控等紧密结合,全面改善人居环境,坚持数字化改革,全力构建丽水山区医疗模式,为群众提供更普惠的医疗服务。(洪恒飞 赖英映 科技日报记者 江耘)

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 汇源自救方案公布!与“猪肉大王”天地壹号合作

  • 北航校友夫妇捐赠1亿建校友之家 提出勿宣传个人

独家策划

推荐阅读
至尊彩票官网亚马逊中国清仓大促,PC、移动端、微信小程序全线崩溃
2024-01-08
至尊彩票登录超温柔韩系风铃卷了解下
2024-10-26
至尊彩票娱乐 复盘世休大会后的杭州 或许是平谷未来的样子
2024-07-17
至尊彩票邀请码 原配捉奸反被告,现在"老王"这么牛?
2024-10-13
至尊彩票官方《北京中轴线保护管理规划(2022年-2035年)》公布实施
2024-10-18
至尊彩票赔率孩子集邮知识你了解多少?
2024-01-11
至尊彩票APP内蒙古邢云被开除党籍 落马时已退休近3年
2024-01-07
至尊彩票手机版APP航拍热带气旋肆虐莫桑比克 房屋被毁
2024-05-18
至尊彩票app跳台滑雪宋祺武无缘决赛:多给一些时间我们会站在世界顶尖
2024-06-26
至尊彩票app下载《桃花源记》中的历史密码
2024-09-28
至尊彩票客户端下载光明网等承办2022年第四季度“中国好人榜”发布活动
2024-05-30
至尊彩票下载郭晶晶三儿女萌照 哥哥照顾妹妹
2024-04-19
至尊彩票网址公益宝贝2017年度项目监测概况
2024-07-12
至尊彩票技巧刑满释放人员持刀猛刺狱警致死 被提起公诉
2024-10-26
至尊彩票计划群丹帅:火箭罚球应再多20次 哈登:我只想要裁判公平
2024-02-15
至尊彩票开奖结果早安我的少年:有温度的生活伴侣
2024-03-17
至尊彩票软件四川发布春季开学紧急通知:高校报到前持48小时内核酸阴性证明
2024-07-30
至尊彩票登录 青岛3岁神童走红,“神童教育”的背后,是家长们的专权!
2024-08-18
至尊彩票玩法 黄景瑜出席活动 黑色套装利落帅气
2024-04-23
至尊彩票客户端日本人十连休出国旅客数将创新高 来中国的最多
2024-11-03
至尊彩票充值清华校友三创大赛秀“硬科技”
2024-03-24
至尊彩票必赚方案总书记亲讲第一课
2024-04-22
至尊彩票交流群苏州楼市再现抢地抢房 这一轮将狂奔多久?
2024-04-11
至尊彩票下载app两月市值蒸发2600亿美元 苹果时代已落幕在即?
2024-06-30
加载更多
至尊彩票地图